This is a new institutional repository for San Diego Zoo Global.  Check back to view our progress as we load information about our 3000+ research publications.  We will also be adding additional content over time. Feel welcome to email us with any questions.


Select a community to browse its collections.

San Diego Zoo Global Research
San Diego Zoo Global Archives
San Diego Zoo Global Creative Works
  • Cognition in a changing world: Red-headed gouldian finches enter spatially unfamiliar habitats more readily than do black-headed birds

    Mettke-Hofmann, Claudia; Eccles, Georgina R.; Greggor, Alison L.; Bethell, Emily J. (Frontiers Media SA, 2020)
    Human activities are increasingly confronting animals with unfamiliar environmental conditions. For example, habitat change and loss often lead to habitat fragmentation, which can create barriers of unsuitable and unfamiliar habitat affecting animal movements and survival. When confronted with habitat changes, animals’ cognitive abilities play an important, but often neglected part in dealing with such change. Animals must decide whether to approach and investigate novel habitats (spatial neophilia) or whether to avoid them (spatial neophobia) due to potential danger. For species with strict habitat preferences, such as the Gouldian finch (Erythrura gouldiae), which is an open habitat specialist, understanding these novelty responses may be especially important for predicting responses to habitat changes. The Gouldian finch is a polymorphic species, with primarily red or black head colors, which are linked to differing behavioral phenotypes, including novelty reactions. Here we investigate responses to novel habitats (open, dense) in the Gouldian finch, manipulating the color composition of same-sex pairs. Two experiments, each consisting of novel open and novel dense habitat, tested birds in opposite head color combinations in the two experiments. We measured the number of approaches birds made (demonstrating conflict between approach and avoidance), and their entry latency to novel habitats. Gouldian finches showed more approach attempts (stronger approach-avoidance conflict) towards the dense as compared to the open habitat, confirming their open habitat preferences. Black-headed birds also hesitated longer to enter the dense habitat as compared to the open habitat, particularly in experiment 1, appearing less neophilic than red-headed birds, which showed similar entry latencies into both habitat types. This is surprising as black-headed birds were more neophilic in other contexts. Moreover, there was some indication that pairings including at least one black-headed bird had a stronger approach-avoidance conflict than pairings of pure red-headed birds. Results suggest that the black-headed birds use a cognitive strategy typical for residents, whereas red-headed birds use a cognitive strategy known for migrants/nomads, which may cognitively complement each other. However, as 70% of the population in the wild are black-headed, the spatial wariness we document could be widespread, which may negatively affect population persistence as habitats change.
  • Environmental variability supports chimpanzee behavioural diversity

    Kalan, Ammie K.; Kulik, Lars; Arandjelovic, Mimi; Boesch, Christophe; Haas, Fabian; Dieguez, Paula; Barratt, Christopher D.; Abwe, Ekwoge E.; Agbor, Anthony; Angedakin, Samuel; et al. (Springer Science and Business Media LLC, 2020)
    Large brains and behavioural innovation are positively correlated, species-specific traits, associated with the behavioural flexibility animals need for adapting to seasonal and unpredictable habitats. Similar ecological challenges would have been important drivers throughout human evolution. However, studies examining the influence of environmental variability on within-species behavioural diversity are lacking despite the critical assumption that population diversification precedes genetic divergence and speciation. Here, using a dataset of 144 wild chimpanzee (Pan troglodytes) communities, we show that chimpanzees exhibit greater behavioural diversity in environments with more variability — in both recent and historical timescales. Notably, distance from Pleistocene forest refugia is associated with the presence of a larger number of behavioural traits, including both tool and non-tool use behaviours. Since more than half of the behaviours investigated are also likely to be cultural, we suggest that environmental variability was a critical evolutionary force promoting the behavioural, as well as cultural diversification of great apes.
  • Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus)

    Colosimo, Giuliano; Di Marco, Gabriele; D’Agostino, Alessia; Gismondi, Angelo; Vera, Carlos A.; Gerber, Glenn P.; Scardi, Michele; Canini, Antonella; Gentile, Gabriele (Springer Science and Business Media LLC, 2020)
    The only known population of Conolophus marthae (Reptilia, Iguanidae) and a population of C. subcristatus are syntopic on Wolf Volcano (Isabela Island, Galápagos). No gene flow occurs suggesting that effective reproductive isolating mechanisms exist between these two species. Chemical signature of femoral pore secretions is important for intra- and inter-specific chemical communication in squamates. As a first step towards testing the hypothesis that chemical signals could mediate reproductive isolation between C. marthae and C. subcristatus, we compared the chemical profiles of femoral gland exudate from adults caught on Wolf Volcano. We compared data from three different years and focused on two years in particular when femoral gland exudate was collected from adults during the reproductive season. Samples were processed using Gas Chromatography coupled with Mass Spectrometry (GC–MS). We identified over 100 different chemical compounds. Non-Metric Multidimensional Scaling (nMDS) was used to graphically represent the similarity among individuals based on their chemical profiles. Results from non-parametric statistical tests indicate that the separation between the two species is significant, suggesting that the chemical profile signatures of the two species may help prevent hybridization between C. marthae and C. subcristatus. Further investigation is needed to better resolve environmental influence and temporal reproductive patterns in determining the variation of biochemical profiles in both species.
  • Devastating decline of forest elephants in Central Africa

    Maisels, F.; Strindberg, S.; Blake, S.; Wittemyer, G.; Hart, J.; Williamson, E. A.; Aba'a, R.; Abitsi, G.; Ambahe, R. D.; Amsini, F.; et al. (2013)
    African forest elephants-taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002-2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced.
  • The i5K Initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment

    Evans, Jay D.; Brown, Susan J.; Hackett, Kevin J.; Robinson, Gene; Richards, Stephen; Lawson, Daniel; Elsik, Christine; Coddington, Jonathan; Edwards, Owain; Emrich, Scott; et al. (2013)
    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind.

View more