• Conservation genomics of threatened animal species

      Steiner, Cynthia C.; Putnam, Andrea S.; Hoeck, Paquita E. A.; Ryder, Oliver A. (2013)
      The genomics era has opened up exciting possibilities in the field of conservation biology by enabling genomic analyses of threatened species that previously were limited to model organisms. Next-generation sequencing (NGS) and the collection of genome-wide data allow for more robust studies of the demographic history of populations and adaptive variation associated with fitness and local adaptation.…
    • Reproductive impacts of endocrine-disrupting chemicals on wildlife species: Implications for conservation of endangered species

      Tubbs, Christopher W.; McDonough, Caitlin E. (2018)
      Wildlife have proven valuable to our understanding of the potential effects of endocrine-disrupting chemicals (EDCs) on human health by contributing considerably to our understanding of the mechanisms and consequences of EDC exposure. But the threats EDCs present to populations of wildlife species themselves are significant, particularly for endangered species whose existence is vulnerable to any reproductive perturbation....
    • The Genome 10K Project: A Way Forward

      Koepfli, Klaus-Peter; Benedict, Paten; The Genome 10K Community of Scientists; Antunes, Agostinho; Belov, Kathy; Bustamante, Carlos; Castoe, Todd A.; Clawson, Hiram; Crawford, Andrew J.; Diekhans, Mark; et al. (2015)
      The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years....
    • Viable cell culture banking for biodiversity characterization and conservation

      Ryder, Oliver A.; Onuma, Manabu (2018)
      Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.