• Chilled frogs are hot: hibernation and reproduction of the Endangered mountain yellow-legged frog Rana muscosa

      Santana, Frank E.; Swaisgood, Ronald R.; Lemm, Jeffrey M.; Fisher, Robert N.; Clark, Rulon W. (2015)
      In the face of the sixth great extinction crisis, it is imperative to establish effective breeding protocols for amphibian conservation breeding programs. Captive efforts should not proceed by trial and error, nor should they jump prematurely to assisted reproduction techniques, which can be invasive, difficult, costly, and, at times, counterproductive. Instead, conservation practitioners should first look to nature for guidance, and replicate key conditions found in nature in the captive environment, according to the ecological and behavioral requirements of the species. We tested the effect of a natural hibernation regime on reproductive behaviors and body condition in the Endangered mountain yellow-legged frog Rana muscosa. Hibernation had a clear positive effect on reproductive behavior, manifesting in vocal advertisement signaling, female receptivity, amplexus, and oviposition. These behaviors are critical components of courtship that lead to successful reproduction. Our main finding was that captive R. muscosa require a hibernation period for successful reproduction, as only hibernated females produced eggs and only hibernated males successfully fertilized eggs. Although hibernation also resulted in a reduced body condition, the reduction appeared to be minimal with no associated mortality. The importance of hibernation for reproduction is not surprising, since it is a major component of the conditions that R. muscosa experiences in the wild. Other amphibian conservation breeding programs can also benefit from a scientific approach that tests the effect of natural ecological conditions on reproduction. This will ensure that captive colonies maximize their role in providing genetic reservoirs for assurance and reintroduction efforts.
    • Using tri-axial accelerometers to identify wild polar bear behaviors

      Pagano, Anthony M.; Rode, K. D.; Cutting, A; Owen, Megan A.; Jensen, S; Ware, J. V.; Robbins, Ct; Durner, Gm; Atwood, Todd C.; Obbard, M. E.; et al. (2017)
      Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.