• Great ape genetic diversity and population history

      Prado-Martinez, Javier; Sudmant, Peter H.; Kidd, Jeffrey M.; Li, Heng; Kelley, Joanna L.; Lorente-Galdos, Belen; Veeramah, Krishna R.; Woerner, August E.; O’Connor, Timothy D.; Santpere, Gabriel; et al. (2013)
      Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
    • Human impact erodes chimpanzee behavioral diversity

      Kühl, Hjalmar S.; Boesch, Christophe; Kulik, Lars; Haas, Fabian; Arandjelovic, Mimi; Dieguez, Paula; Bocksberger, Gaëlle; McElreath, Mary Brooke; Agbor, Anthony; Angedakin, Samuel; et al. (2019)
      Chimpanzees possess a large number of behavioral and cultural traits among non-human species. The ‘disturbance hypothesis’ predicts that human impact depletes resources and disrupts social learning processes necessary for behavioral and cultural transmission....
    • Updated geographic range maps for giraffe, Giraffa spp., throughout sub-Saharan Africa, and implications of changing distributions for conservation

      O'Connor, David; Stacy-Dawes, Jenna; Muneza, Arthur; Fennessy, Julian; Gobush, Kathleen; Chase, Michael J.; Brown, Michael B.; Bracis, Chloe; Elkan, Paul; Zaberirou, Abdoul Razazk Moussa; et al. (2019)
      Giraffe populations have declined in abundance by almost 40% over the last three decades, and the geographic ranges of the species (previously believed to be one, now defined as four species) have been significantly reduced or altered. With substantial changes in land uses, loss of habitat, declining abundance, translocations, and data gaps, the existing geographic range maps for giraffe need to be updated. We performed a review of existing giraffe range data, including aerial and ground observations of giraffe, existing geographic range maps, and available literature. The information we collected was discussed with and validated by subject?matter experts. Our updates may serve to correct inaccuracies or omissions in the baseline map, or may reflect actual changes in the distribution of giraffe. Relative to the 2016 International Union for Conservation of Nature Red List Assessment range map, the updated geographic range maps show a 5.6% decline in the range area of all giraffe taxa combined. The ranges of Giraffa camelopardalis (northern giraffe) and Giraffa tippelskirchi (Masai giraffe) decreased in area by 37% (122432 km2) and 4.7% (20816 km2) respectively, whereas 14% (41696 km2) of the range of Giraffa reticulata (reticulated giraffe) had not been included in the original geographic range map and has now been added. The range of Giraffa giraffa (southern giraffe) showed little overall change; it increased by 0.1% (419 km2). Ranges were larger than previously reported in six of the 21 range countries (Botswana, Ethiopia, Mozambique, South Sudan, Tanzania, and Zimbabwe), had declined in seven (Cameroon, Central African Republic, Chad, Malawi, Niger, Uganda, and Zambia) and remained unchanged in seven (Angola, Democratic Republic of Congo, eSwatini, Namibia, Rwanda, Somalia, and South Africa). In Kenya, the ranges of both Giraffa tippelskirchi and Giraffa camelopardalis decreased, but the range of Giraffa reticulata was larger than previously believed. Our updated range maps increase existing knowledge, and are important for conservation planning for giraffe. However, since rapid infrastructure development throughout much of Africa is a driver of giraffe population declines, there is an urgent need for a continent?wide, consistent and systematic giraffe survey to produce more accurate range maps, in order to inform conservation and policy planning.