• Challenges of learning to escape evolutionary traps

      Greggor, Alison L.; Trimmer, Pete C.; Barrett, Brendan J.; Sih, Andrew (2019)
      Many animals respond well behaviorally to stimuli associated with human-induced rapid environmental change (HIREC), such as novel predators or food sources. Yet others make errors and succumb to evolutionary traps: approaching or even preferring low quality, dangerous or toxic options, avoiding beneficial stimuli, or wasting resources responding to stimuli with neutral payoffs. A common expectation is that learning should help animals adjust to HIREC; however, learning is not always expected or even favored in many scenarios that expose animals to ecological and evolutionary traps. We propose a conceptual framework that aims to explain variation in when learning can help animals avoid and escape traps caused by HIREC. We first clarify why learning to correct two main types of errors (avoiding beneficial options, and not avoiding detrimental options) might be difficult (limited by constraints). We then identify and discuss several key behavioral mechanisms (adaptive sampling, generalization, habituation, reversal learning) that can be targeted to help animals learn to avoid traps. Finally, we discuss how individual differences in neophobia/neophilia and personality relate to learning in the context of HIREC traps, and offer some general guidance for disarming traps. Given how devastating traps can be for animal populations, any breakthrough in mitigating trap outcomes via learning could make the difference in developing effective solutions.
    • Past experiences and future expectations generate context-dependent costs of foraging

      Berger-Tal, Oded; Embar, Keren; Kotler, Burt P.; Saltz, David (2014)
      We released Allenby’s gerbils (Gerbillus andersoni allenbyi) into an enclosure containing rich patches with equal amounts of food and manipulated the quality of the environment over time by reducing the amount of food in most (but not all) food patches and then increasing it again…. Specifically, in the second rich period, the gerbils spent more time foraging and harvested more food from the patches. Thus, seemingly identical environments can be treated as strikingly different by foragers as a function of their past experiences and future expectations.
    • Social learning in captive African elephants (Loxodonta africana africana)

      Greco, Brian J.; Brown, Tracey K.; Andrews, Jeff R. M.; Swaisgood, Ronald R.; Caine, Nancy G. (2013)
      …Social learning is assumed to be important for elephants, but evidence in support of that claim is mostly anecdotal. Using a herd of six adult female African bush elephants (Loxodonta africana africana) at the San Diego Zoo’s Safari Park, we evaluated whether viewing a conspecific’s interactions facilitated learning of a novel task….
    • The exploration-exploitation dilemma: A Multidisciplinary framework

      Berger-Tal, Oded; Nathan, Jonathan; Meron, Ehud; Saltz, David (2014)
      The trade-off between the need to obtain new knowledge and the need to use that knowledge to improve performance is one of the most basic trade-offs in nature, and optimal performance usually requires some balance between exploratory and exploitative behaviors. Researchers in many disciplines have been searching for the optimal solution to this dilemma. Here we present a novel model in which the exploration strategy itself is dynamic and varies with time in order to optimize a definite goal, such as the acquisition of energy, money, or prestige. Our model produced four very distinct phases: Knowledge establishment, Knowledge accumulation, Knowledge maintenance, and Knowledge exploitation, giving rise to a multidisciplinary framework that applies equally to humans, animals, and organizations. The framework can be used to explain a multitude of phenomena in various disciplines, such as the movement of animals in novel landscapes, the most efficient resource allocation for a start-up company, or the effects of old age on knowledge acquisition in humans.