• Comparative and demographic analysis of orang-utan genomes

      Locke, Devin P.; Hillier, LaDeana W.; Warren, Wesley C.; Worley, Kim C.; Nazareth, Lynne V.; Muzny, Donna M.; Yang, Shiaw-Pyng; Wang, Zhengyuan; Chinwalla, Asif T.; Minx, Pat; et al. (2011)
      ‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal1, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
    • Copy number variation analysis in the great apes reveals species-specific patterns of structural variation

      Gazave, E.; Darre, F.; Morcillo-Suarez, C.; Petit-Marty, N.; Carreno, A.; Marigorta, U. M.; Ryder, Oliver A.; Blancher, A.; Rocchi, M.; Bosch, E.; et al. (2011)
      ...We performed intraspecific comparative genomic hybridizations to identify loci harboring copy number variants in each of the four great apes: bonobos, chimpanzees, gorillas, and orangutans. For the first time, we could analyze differences in CNV location and frequency in these four species, and compare them with human CNVs and primate segmental duplication (SD) maps....
    • Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

      Watkins, Paul A.; Moser, Ann B.; Toomer, Cicely B.; Steinberg, Steven J.; Moser, Hugo W.; Karaman, Mazen W.; Ramaswamy, Krishna; Siegmund, Kimberly D.; Lee, D. Rick; Ely, John J.; et al. (2010)
      It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism.
    • Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers

      Walker, Jerilyn A.; Konkel, Miriam K.; Ullmer, Brygg; Monceaux, Christopher P.; Ryder, Oliver A.; Hubley, Robert; Smit, Arian FA; Batzer, Mark A. (2012)
      Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition.
    • Recent decline in suitable environmental conditions for African great apes

      Junker, Jessica; Blake, Stephen; Boesch, Christophe; Campbell, Geneviève; Toit, Louwrens du; Duvall, Chris; Ekobo, Atanga; Etoga, Gilles; Galat-Luong, Anh; Gamys, Joel; et al. (2012)
      To predict the distribution of suitable environmental conditions (SEC) for eight African great ape taxa for a first time period, the 1990s and then project it to a second time period, the 2000s; to assess the relative importance of factors influencing SEC distribution and to estimate rates of SEC loss, isolation and fragmentation over the last two decades....