• A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease.

      Reeder, N.M.M.; Pessier, Allan P.; Vredenburg, V.T. (2012)
      Chytridiomycosis, a disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is driving amphibian declines and extinctions in protected areas globally. The introduction of invasive reservoir species has been implicated in the spread of Bd but does not explain the appearance of the pathogen in remote protected areas. In the high elevation (>1500 m) Sierra Nevada of California, the native Pacific chorus frog, Pseudacris regilla, appears unaffected by chytridiomycosis while sympatric species experience catastrophic declines. We investigated whether P. regilla is a reservoir of Bd by comparing habitat occupancy before and after a major Bd outbreak and measuring infection in P. regilla in the field, monitoring susceptibility of P. regilla to Bd in the laboratory, examining tissues with histology to determine patterns of infection, and using an innovative soak technique to determine individual output of Bd zoospores in water. Pseudacris regilla persists at 100% of sites where a sympatric species has been extirpated from 72% in synchrony with a wave of Bd. In the laboratory, P. regilla carried loads of Bd as much as an order of magnitude higher than loads found lethal to sympatric species. Histology shows heavy Bd infection in patchy areas next to normal skin, a possible mechanism for tolerance. The soak technique was 77.8% effective at detecting Bd in water and showed an average output of 68 zoospores per minute per individual. The results of this study suggest P. regilla should act as a Bd reservoir and provide evidence of a tolerance mechanism in a reservoir species....
    • Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians

      Brannelly, L.A.; Richards-Zawacki, C.L.; Pessier, Allan P. (2012)
      Due in large part to recent global declines and extinctions, amphibians are the most threatened vertebrate group. Captive assurance colonies may be the only lifeline for some rapidly disappearing species. Maintaining these colonies free of disease represents a challenge to effective amphibian conservation. The fungal disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is one of the major contributors to global amphibian declines and also poses a serious threat to captive assurance colonies. Many treatment options for Bd infection have not been experimentally tested and the commonly administered dosages of some drugs are known to have negative side effects, highlighting a need for clinical trials. The objective of this study was to clinically test the drug itraconazole as a method for curing Bd infection. We bathed Bd-positive juveniles of 2 anuran amphibian species, Litoria caerulea and Incilius nebulifer, in aqueous itraconazole, varying the concentration and duration of treatment, to find the combination that caused the fewest side effects while also reliably ridding animals of Bd. Our results suggest that a bath in 0.0025% itraconazole for 5 min d?1 for 6 d reliably cures Bd infection and causes fewer side effects than the longer treatment times and higher concentrations of this drug that are commonly administered.
    • Metabolome-informed microbiome analysis refines metadata classifications and reveals unexpected medication transfer in captive cheetahs

      Gauglitz, Julia M.; Morton, James T.; Tripathi, Anupriya; Hansen, Shalisa; Gaffney, Michele; Carpenter, Carolina; Weldon, Kelly C.; Shah, Riya; Parampil, Amy; Fidgett, Andrea; et al. (2020)
      Even high-quality collection and reporting of study metadata in microbiome studies can lead to various forms of inadvertently missing or mischaracterized information that can alter the interpretation or outcome of the studies, especially with nonmodel organisms. Metabolomic profiling of fecal microbiome samples can provide empirical insight into unanticipated confounding factors that are not possible to obtain even from detailed care records. We illustrate this point using data from cheetahs from the San Diego Zoo Safari Park. The metabolomic characterization indicated that one cheetah had to be moved from the non-antibiotic-exposed group to the antibiotic-exposed group. The detection of the antibiotic in this second cheetah was likely due to grooming interactions with the cheetah that was administered antibiotics. Similarly, because transit time for stool is variable, fecal samples within the first few days of antibiotic prescription do not all contain detected antibiotics, and the microbiome is not yet affected. These insights significantly altered the way the samples were grouped for analysis (antibiotic versus no antibiotic) and the subsequent understanding of the effect of the antibiotics on the cheetah microbiome. Metabolomics also revealed information about numerous other medications and provided unexpected dietary insights that in turn improved our understanding of the molecular patterns on the impact on the community microbial structure. These results suggest that untargeted metabolomic data provide empirical evidence to correct records and aid in the monitoring of the health of nonmodel organisms in captivity, although we also expect that these methods may be appropriate for other social animals, such as cats.