Genome-wide SNP loci reveal novel insights into koala (Phascolarctos cinereus) population variability across its range
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Date Issued
2016Author
Kjeldsen, Shannon R.Zenger, Kyall R.
Leigh, Kellie
Ellis, William A.
Tobey, Jennifer R.
Phalen, David
Melzer, Alistair
FitzGibbon, Sean
Raadsma, Herman W.
Journal
Conservation GeneticsVolume
17Issue
2Start page
337End page
353
Metadata
Show full item recordAlternative link
https://link.springer.com/article/10.1007/s10592-015-0784-3Abstract
The koala (Phascolarctos cinereus) is an iconic Australian species that is currently undergoing a number of threatening processes, including disease and habitat loss. A thorough understanding of population genetic structuring and genomic variability of this species is essential to effectively manage populations across the species range. Using a reduced representation genome sequencing method known as double digest restriction-associated sequencing, this study has provided the first genome-wide SNP marker panel in the koala. In this study, 33,019 loci were identified in the koala and a filtered panel of 3060 high-utility SNP markers, including 95 sex-linked markers, were used to provide key insights into population variability and genomic variation in 171 koalas from eight populations across their geographic range. Broad-scale genetic differentiation between geographically separated populations (including sub-species) was assessed and revealed significant differentiation between all populations (FST range = 0.01–0.28), with the largest divergence observed between the three geographically distant subgroups (QLD, NSW and VIC) along the east coast of Australia (average FST range = 0.17–0.23). Sub-group divergence appears to be a reflection of an isolation by distance effect and sampling strategy rather than true evidence of sub-speciation. This is further supported by low proportions of AMOVA variation between sub-species groups (11.19 %). Fine-scale analysis using genome-wide SNP loci and the NETVIEW pipeline revealed cryptic genetic sub-structuring within localised geographic regions, which corresponded to the hierarchical mating system of the species. High levels of genome-wide SNP heterozygosity were observed amongst all populations (He = 0.25–0.35), and when evaluating across the species to other vertebrate taxa were amongst the highest values observed. This illustrates that the species as a whole still retains high levels of diversity which is comparable to other outbred vertebrate taxa for genome-wide SNPs. Insights into the potential for adaptive variation in the koala were also gained using outlier analysis of genome-wide SNPs. A total of 10 putative outlier SNPs were identified indicating the high likelihood of local adaptations within populations and regions. This is the first use of genome-wide markers to assess population differentiation at a broad-scale in the koala and the first time that sex-linked SNPs have been identified in this species. The application of this novel genomic resource to populations across the species range will provide in-depth information allowing informed conservation priorities and management plans for in situ koalas across Australia and ex situ around the world.Type
ArticleRights
© Springer Science+Business Media Dordrecht 2015ae974a485f413a2113503eed53cd6c53
10.1007/s10592-015-0784-3
Scopus Count
Collections