Show simple item record

dc.contributor.authorDwyer, Rebecca A.
dc.contributor.authorWitte, Carmel L.
dc.contributor.authorBuss, Peter
dc.contributor.authorGoosen, Wynand J.
dc.contributor.authorMiller, Michele
dc.date.accessioned2021-03-19T17:31:20Z
dc.date.available2021-03-19T17:31:20Z
dc.date.issued2020
dc.identifier.issn2297-1769
dc.identifier.doi10.3389/fvets.2020.580476
dc.identifier.urihttp://hdl.handle.net/20.500.12634/952
dc.description.abstractCases of tuberculosis (TB) resulting from infection with Mycobacterium tuberculosis complex (MTBC) have been recorded in captive white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. More recently, cases have been documented in free-ranging populations of both species in bovine tuberculosis (bTB) endemic areas of South Africa. There is limited information on risk factors and transmission patterns for MTBC infections in African rhinoceros, however, extrapolation from literature on MTBC infections in other species and multi-host systems provides a foundation for understanding TB epidemiology in rhinoceros species. Current diagnostic tests include blood-based immunoassays but distinguishing between subclinical and active infections remains challenging due to the lack of diagnostic techniques. In other species, demographic risk factors for MTBC infection include sex and age, where males and adults are generally at higher risk than females and younger individuals. Limited available historical information reflects similar age- and sex-associated patterns for TB in captive black and white rhinoceros, with more reports of MTBC-associated disease in black rhinoceros than in white rhinoceros. The degree of MTBC exposure in susceptible wildlife depends on their level of interaction, either directly with other infected individuals or indirectly through MTBC contaminated environments, which is dependent on the presence and abundance of infected reservoir hosts and the amount of MTBC shed in their excreta. Captive African rhinoceros have shown evidence of MTBC shedding, and although infection levels are low in free-ranging rhinoceros, there is a risk for intraspecies transmission. Free-ranging rhinoceros in bTB endemic areas may be exposed to MTBC from other infected host species, such as the African buffalo (Syncerus caffer) and greater kudu (Tragelaphus strepsiceros), through shared environmental niches, and resource co-utilization. This review describes current knowledge and information gaps regarding the epidemiology of TB in African rhinoceros.
dc.language.isoen
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672123/
dc.rightsCopyright © 2020 Dwyer, Witte, Buss, Goosen and Miller. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectWHITE RHINOCEROSES
dc.subjectBLACK RHINOCEROSES
dc.subjectSOUTHERN AFRICA
dc.subjectINFECTION
dc.subjectDISEASES
dc.subjectEPIDEMIOLOGY
dc.subjectDIAGNOSIS
dc.subjectSEX DIFFERENCES
dc.subjectDEVELOPMENT
dc.subjectBUFFALOS
dc.subjectKUDUS
dc.subjectFOOD SHARING
dc.titleEpidemiology of tuberculosis in multi-host wildlife systems: Implications for black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros
dc.typeArticle
dc.source.journaltitleFrontiers in Veterinary Science
dc.source.volume7
dc.source.beginpage580476
html.description.abstractCases of tuberculosis (TB) resulting from infection with Mycobacterium tuberculosis complex (MTBC) have been recorded in captive white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. More recently, cases have been documented in free-ranging populations of both species in bovine tuberculosis (bTB) endemic areas of South Africa. There is limited information on risk factors and transmission patterns for MTBC infections in African rhinoceros, however, extrapolation from literature on MTBC infections in other species and multi-host systems provides a foundation for understanding TB epidemiology in rhinoceros species. Current diagnostic tests include blood-based immunoassays but distinguishing between subclinical and active infections remains challenging due to the lack of diagnostic techniques. In other species, demographic risk factors for MTBC infection include sex and age, where males and adults are generally at higher risk than females and younger individuals. Limited available historical information reflects similar age- and sex-associated patterns for TB in captive black and white rhinoceros, with more reports of MTBC-associated disease in black rhinoceros than in white rhinoceros. The degree of MTBC exposure in susceptible wildlife depends on their level of interaction, either directly with other infected individuals or indirectly through MTBC contaminated environments, which is dependent on the presence and abundance of infected reservoir hosts and the amount of MTBC shed in their excreta. Captive African rhinoceros have shown evidence of MTBC shedding, and although infection levels are low in free-ranging rhinoceros, there is a risk for intraspecies transmission. Free-ranging rhinoceros in bTB endemic areas may be exposed to MTBC from other infected host species, such as the African buffalo (Syncerus caffer) and greater kudu (Tragelaphus strepsiceros), through shared environmental niches, and resource co-utilization. This review describes current knowledge and information gaps regarding the epidemiology of TB in African rhinoceros.
dc.source.conference


This item appears in the following Collection(s)

  • SDZWA Research Publications
    Peer reviewed and scientific works by San Diego Zoo Wildlife Alliance staff. Includes books, book sections, articles and conference publications and presentations.

Show simple item record

Copyright © 2020 Dwyer, Witte, Buss, Goosen and Miller.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as Copyright © 2020 Dwyer, Witte, Buss, Goosen and Miller. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.